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VELOCITY-DEPENDENT CONSERVATIVE NONLINEAR
OSCILLATORS WITH EXACT HARMONIC SOLUTIONS

H. P. W. GOTTLIEB

School of Science, Gri.th ;niversity, Nathan, Queensland 4111, Australia

(Received 26 February 1999, and in ,nal form 20 July 1999)

Conservative oscillator equations which have quadratic non-linearities in both
velocity and displacement and which possess an exact harmonic solution are
investigated. The conserved quantity is constructed, and its zero value corresponds
to the harmonic solution. The further signi"cance of the harmonic solution as
corresponding to a bifurcation is revealed.
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1. INTRODUCTION

Few examples of mixed-parity velocity-dependent conservative nonlinear oscillator
di!erential equations are to be found in the literature. Some such simple systems
are

xK#x#xR 2"0, (1.1)
and

xK!x2!xR 2!1"0, (1.2)

which appear amongst exercises (not requiring solution of the d.e.s) in Jordan and
Smith [1, p. 29] and Eisen [2, p. 234] respectively. The equation

xK#x#exR 2"0 (1.3)

appears as a worked example in Mickens [3] demonstrating the use of perturbation
methods, and the equation

xK#x!e(x2#xR 2)"0 (1.4)

is given as a problem there. Equation (1.4) with a plus sign appears in reference
[4, p. 176] as an exercise in uniform expansions. The equation (cf. (1.1) and (1.3))

xK#kx!cxR 2"0, (1.5)

arising from the dynamics of avalanches and sand-piles, has been studied at some
length by Linz [5]. The phase plane for equation (1.1) (with a factor 2 multiplying
the xK term) has been given by Andronov et al. in reference [6].
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The quadratic non-linear term x2 occurs for instance in the non-linear equation
of motion for the free vibrations of laminated plates [7], as well as more generally
when there is an anharmonic term due to unsymmetrical restoring forces. The
equation parameters depend on the material properties. The quadratic non-linear
velocity-dependent conservative term xR 2 may appear in mechanical and electrical
systems [6]. Such a term occurs for a example in an electrical circuit with
a non-linear resistance as considered by Migulin et al. [8]. For the driven circuit,
this term has been shown in reference [8] to result in a bias voltage which is
generated due to the asymmetry of the non-linear resistance, proportional to this
term's coe$cient parameter.

In this paper we consider velocity-dependent conservative non-linear oscillator
equations with both mixed-parity terms of the lowest order, namely quadratic, and
seek forms which have an exact harmonic (cosine) solution.

A "rst integral of the general equation under investigation yields a conservation
law. The exact harmonic solution corresponds to value zero for the conserved
quantity. The form of the conserved function allows a Hamiltonian formulation to
be made. The phase portrait in the xR , x phase plane is analyzed to determine initial
conditions which lead to periodic solutions via determination of the equilibrium
points and the separatrix equation. The various situations which may arise in the
wider phase portrait are characterized in terms of the conserved quantity value. The
further signi"cance of the harmonic solution is shown to be its correspondence to
a bifurcation. A particular numerical is presented to illustrate the results.

2. EQUATIONS AND EXACT HARMONIC SOLUTIONS

The general non-linear oscillator equations to be considered here have the form

xK#ax#bx2#cxR 2!D"0 (2.1)

with cO0. (Changes of time and/or length scale may allow one or two coe$cients,
if non-zero, to be set equal to 1. A shift of origin may allow the parameter D to be set
to zero. However, in this analysis we retain all these general parameters.)

We seek equations (2.1) which have the exact harmonic solution

x"a cos ut#b, (2.2)

where u is the (non-zero) radian frequency of oscillations, b is the displacement
&&bias'' and a (non-zero) is an amplitude coe$cient such that the initial displacement
(total amplitude) is given by

x (0),A"A
H
,a#b (2.3a)

with

xR (0)"0. (2.3b)
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Substitution of equation (2.2) into equation (2.1) yields as coe$cients of cos ut,
cos2 ut and constant term, respectively,

!u2a#aa#2b ab"0, (2.4a)

ba2!cu2a2"0, (2.4b)

ab#bb2#cu2a2!D"0, (2.4c)

where these expressions have been set equal to zero since exact solutions are
sought.

From equation (2.4b), since aO0, it is seen immediately that

u2"b/c, (2.5)

so also bO0 for exact harmonic solutions, and sgn b"sgn c, where sgn b is the
sign of non-zero b. From equation (2.4a),

b"(u2!a)/(2b). (2.6)

The value of a is obtained via equation (2.4c):

a2"[(D!ab)/b]!b2, (2.7)

where b is given by equation (2.6). Finally, A is found via equation (2.3a).
Thus, for an exact harmonic solution to exist, the initial displacement A may not

be arbitrarily chosen, but must assume a speci"c value in terms of the equation
parameters. This situation is reminiscent of, but actually di!erent from, the case of
a limit-cycle for non-conservative systems such as the van der Pol equation
[1, p. 100]. For that case, the amplitude of the periodic limit cycle is determined in
terms of equation parameters. However, for other initial conditions, the solutions
are not periodic but as t increases they tend to this periodic but not necessarily
harmonic solution for initial conditions in some suitable range. By contrast, here
equation (2.1) with equation (2.11) has an exact harmonic solution for all t*0 for
prescribed initial condition. For other, suitably nearby, initial conditions, the
solutions will not be harmonic but will still be periodic.

For exact harmonic solutions x"a cos ut#b of equation (2.1), equations
(2.5)}(2.7) are readily solved to yield the solution parameters

u"Jb/c, (2.8)

a"$S
D
b
#

a2

4b2
!

1
4c2

, (2.9)

b"
1
2 A

1
c
!

a
bB . (2.10)
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Thus (recall cO0Ob),

sgn b"sgn c,
D
b
'

1
4 A

1
c
!

a2

b2B (2.11a, b)

must be satis"ed by the equation parameters for such a solution to exist, and the
initial condition for the harmonic solution is

x (0)"A
H
,a#b"A

1
2c

!

a
2bB$S

D
b
#

a2

4b2
!

1
4c2

. (2.12)

(A negative square root for the coe$cient a corresponds to starting at a point on
the same phase orbit with a phase di!erence of n.)

For example, the equation

xK!x#x2#xR 2!1"0 (2.13)

has exact solutions x"$cos t#1, with x (0)"2 or 0 respectively.

2.1. SPECIAL CASE a"0

The special case of zero parameter a in equation (2.1) may be summarized as
follows. The equation

xK#bx2#cxR 2!D"0 (2.1.1)

with

sgn b"sgn c"sgn D, D/b'1/(4c2) (2.1.2a, b)

(so DO0) has exact solutions

x"$S
D
b
!

1
4c2

cosAS
b
c

tB#
1
2c

. (2.1.3)

For example, the non-linear equation xK#x2#xR 2!1"0 with x (0)"
(1$J3)/2 has exact solutions x"$((J3)/2) cos t#1

2
. The equation xK!x2!

xR 2#1"0 with x (0)"(!1$J3)/2 has exact solutions x"$((J3)/2)cos t!1
2
.

Equation (1.2) has no such exact harmonic solution, since sgn DOsgn c there.

2.2. SPECIAL CASE D"0

The equation

xK#ax#bx2#cxR 2"0 (2.2.1)



VELOCITY-DEPENDENT CONSERVATIVE OSCILLATORS 327
with

sgn b"sgn c, D a D'b/c (2.2.2a, b)

(so aO0) has exact solutions

x"$

1
2S

a2

b2
!

1
c2

cos AS
b
c

tB#
1
2 A

1
c
!

a
bB . (2.2.3)

For example, equation (1.4) does not have a solution of this form since D a D"b/c
there. However, the equation xK#2x!e(x2#xR 2)"0 does have exact solutions
(for all e) x"($J3 cos t#1)/(2e), with x (0)"(1$J3)/(2e). This would not arise
using perturbative methods. Equations (1.1), (1.3), and (1.5) therefore do not have
exact solutions of this form, since they have b"0.

2.3. SPECIAL CASE b"0

Another special case is to require that the solution bias b is zero. From equations
(2.4a) and (2.4b), it follows that the equation parameter c cannot be arbitrary as in
the previous sub-section but must be related to the other parameters a and b, such
that c"b/a. The result is that the equation must have the form

xK#ax#bx2#(b/a)xR 2!D"0 (2.3.1)

with

sgn b"sgn D, a'0, (2.3.2a, b)

and has exact solutions

x"$S
D
b

cos(Jat). (2.3.3)

For example, the equation xK#x#x2#xR 2!1"0 with x (0)"$1 has exact
solutions x"$cos t (as can be veri"ed by inspection).

3. CONSERVATION LAW

Since xK"(d/dx) (xR 2/2), equation (2.1) may be integrated once to yield a linear
"rst order ordinary di!erential equation for Z"xR 2:

dZ/dx#2cZ"2D!2ax!2bx2. (3.1)

The general solution (recall cO0) is

Z"Ke~2cx#A
D
c
#

a
2c2

!

b
2c3B#A

b
c2
!

a
cB x!

b
c

x2, (3.2)
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where K is an arbitrary constant of integration. Thus, equation (2.1) in general (for
cO0) possesses the conserved quantity

e2cxCxR 2#
b
c

x2#A
a
c
!

b
c2B x#A

b
2c3

!

a
2c2

!

D
cBD"K. (3.3)

Now, substitution of the exact harmonic solution (2.2) with equation (2.8)}(2.11)
into the square bracket on the left-hand side of equation (3.3) causes that expression
to vanish. Thus,

K(harmonic solution)"0, (3.4)

the conserved quantity (3.3) for the oscillator (2.1) has value zero for its exact
harmonic solutions.

3.1. HAMILTONIAN FORMULATION

From the form of the conserved expression on the left-hand side of equation (3.3),
it is evident that the following Lagrangian expression may be de"ned:

¸"

1
2

e2cxCxR 2!
b
c

x2!A
a
c
!

b
c2B x!A

b
2c3

!

a
2c2

!

D
cBD . (3.1.1)

(For the case of parameters b"0 and D"0, this reduces to an equivalent
expression found by Linz [5].)

The conjugate momentum [9] is

p,
L¸
LxR

"e2cxxR . (3.1.2)

The corresponding Hamiltonian H(p, q) is then

H"

1
2

e~2cxp2#
1
2

e2cx C
b
c

x2#A
a
c
!

b
c2B x#A

b
2c3

!

a
2c2

!

D
cBD . (3.1.3)

It is readily con"rmed that Lagrange's equations [9] for ¸ in equation (3.1.1), and
Hamilton's equations [9] for H in equation (3.1.3), yield the oscillator equation of
motion (2.1).

Along a trajectory, the quantity on the right-hand side of equation (3.1.3) is
conserved, with value E"(1/2)K. This value is zero for the exact harmonic
solutions obtained in section 2 above.
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4. PHASE PLANE ANALYSIS

Returning to the general situation of equation (2.1), completion of the square in
equation (3.1) results in

xR 2#A
b
cB (x!b)2"A

b
cB a2#Ke~2cx, (4.1)

where a and b are now de"ned by expressions (2.9) and (2.10) respectively (without
reference to harmonic solutions). It can now be veri"ed by inspection that, if K"0,
equation (4.1) is solved by x"b#a cos[J(b/c)] t, con"rming the "ndings of
sections 2 and 3 above.

In general, if there is a value of x such that

x"A when xR "0, (4.2)

then the value of K can be found in terms of A by setting xR "0 in equation (4.1):

K"e2cAA
b
cB [(A!b)2!a2]. (4.3)

The equation to the phase trajectory in the xR versus x plane is then

xR 2#(b/c) [(x!b)2!a2]"exp[2c (A!x)] (b/c) [(A!b)2!a2], (4.4)

where a and b are in general given by formulae (2.9) and (2.10).
As mentioned above, for the exact harmonic solutions (2.2) with (2.8}11) the

constant K is zero, and the phase plane orbit is an ellipse with x-intercepts (xR "0)
at

x"b$Da D, (4.5a, b)

i.e. Da D is just the length of the semi-major axis. These amplitudes (x-axis intercepts)
for the harmonic motion may be designated by

A`
H
"a#b, A~

H
"b!a. (4.6a, b)

We are now investigate by graphical means how this harmonic solution "ts into
the phase portrait for non-zero values of K, i.e., for general values of the di!erential
equation coe$cients a, b, c, D still satisfying equations (2.11a, b). Thus, b/c'0 in
equation (4.1), and a and b are both real. (For an illustrative example, see section 4.1
and Figure 1.) The equilibrium (or critical or "xed) points of equation (2.1)
correspond to xR "0"xK , i.e.,

A$

F
"!

a
2b

$(sgn b)
1
2S

a2

b2
#

4D
b

. (4.7a, b)



Figure 1. A phase portrait (y,xR versus x) for equation (4.1.1). Intercepts on the x-axis, from the
left, correspond to K"0)2, 0)4, 0)469, 0)470 (the saddle point on the separatrix), 0)469, 0)4, 0)2, 0, !1,
!15, !15)719 (the stable centre), !15, M!1, 0, 0)2, 0)4, 0)469, 0)470, 0)471, 0)7, 1N, 100. (The
9 intercepts in braces, near x"2, are not well resolved at this scale.) Intercepts visible on the y-axis,
starting at the origin and increasing, correspond to K"0, 0)2, 0)4, M0)469, 0)470, 0)471N (not well
resolved at this scale), 0)7, 1.
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(Note that, by equation (2.11b), the quantity under the square root in equation (4.7)
is positive.) For the sake of de"niteness, the case sgn b'0 (hence, sgn c'0) will be
considered henceforth.

To "nd the range of allowable amplitudes A (x-axis intercepts), equation (4.3) is
written as

(A!b)2!a2"K(c/b) exp(!2cA). (4.8)

Equation (4.8) may have no, one, two or three solutions for A, depending on the
value of K, as may be seen by plotting the left-hand-side parabola and the
right-hand-side negative exponential and observing points of intersection.
Expression (4.7a) corresponds to the case when equation (4.8), for K(0, just
acquires one solution for A, i.e., the curves representing the functions of A on either
side of equation (4.8) just osculate (equal values and equal slopes). The phase path is
just the single equilibrium point x"A`

F
, xR "0. The corresponding (negative) value

of K is obtained from equation (4.3) with A"A`
F

(equation (4.7a)).
As K increases, there are two solutions for A (x-axis intercepts) to equation (4.8),

corresponding to a periodic (but not in general harmonic) solution with closed
phase path orbit as can be seen from the form of equation (4.1), which is symmetric
about the x-axis. (See Figure 1 for example.) The point A`

F
is therefore a stable

centre. As K increases further, it passes through the value zero whereat the
harmonic solution occurs with phase orbit x-intercepts given by equations (4.6). As
K increases above zero, equation (4.8) has three solutions for A. The two larger
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values of A correspond to the x-intercepts of a closed (periodic) orbit in phase space
given by equation (4.1). The lowest, third, value of A corresponds to an unbounded
trajectory (unstable solution).

The harmonic solution, with K"0, therefore marks the transition from a closed
orbit (single, periodic solution for x (t)) to two solutions, depending on the initial
conditions: a periodic solution and an unbounded solution. There is thus
a bifurcation with respect to K as parameter at K"0: the harmonic solution is the
&&last'' periodic single solution.

Eventually, K reaches a speci"c value for which equation (4.8) has just two
solutions for A. The lesser solution for A results from osculating curves on the left-
and right-hand sides of equation (4.8), this time for K'0, and corresponds to the
lower equilibrium point A~

F
(equation (4.7b)). The greater solution for A is then the

least upper bound (designated A
SEP
*see later) of amplitudes for which periodic

orbits exist.
Thereafter, as K increases further, there is only one larger solution A to equation

(4.8): the phase paths (4.1) are unbounded and the solutions are unstable. The point
A~

F
is therefore a saddle point, and the closed-phase curve through this point is the

separatrix (homoclinic orbit).
The value of the conserved quantity K"K

SEP
along the separatrix is given

explicitly by equation (4.3) with A"A~
F

given by equation (4.7b). The equation to
the separatrix in the phase plane portrait is therefore given via equation (4.4) as

xR 2#(b/c) [(x!b)2!a2]"exp[2c(A~
F
!x)] (b/c) [(A~

F
!b)2!a2] (4.9)

with a and b given by equations (2.9) and (2.10).
Periodic solutions therefore occur for the amplitude range

A~
F
(A,x D

x5 /0
(A

SEP
, (4.10)

where A
SEP

is computable as the other solution (OA~
F

) of the transcendental
separatrix equation (4.9) with xR "0:

(A
SEP

!b)2!a2"e2c(A~
F ~ASEP)x(A~

F
!b)2!a2y (4.11)

with A~
F

given by equation (4.7b). (The form of equation (4.11) con"rms that K
SEP

on the separatrix may be calculated from equation (4.3) using either A"A~
F

or
A"A

SEP
.)

4.1. AN EXAMPLE

As an example, consider again equation (2.13), with a"!1, b"c"D"1:

xK!x#x2#xR 2!1"0. (4.1.1)
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Then, by equation (2.8)}(2.12) and the above, u"1, a"$1, b"1,
K"A(A!2) exp(2A), A`

H
"2, A~

H
"0, A$

F
"(1$J5)/2. The phase portrait

consists of the curves
(x!1)2#y2"1#Ke~2x, (4.1.2)

where y,xR . For K"0, this is just a circle, centre (1, 0), radius 1, corresponding to
the exact harmonic solution x"cos(t)#1 with x(0)"2 (or x"!cos(t)#1 with
x(0)"0), with period 2n. The equation to the separatrix is

y2#x2!2x"1
2
(1#J5)e(1~J5~2x). (4.1.3)

The x-intercepts for this (solutions to equation (4.1.3) with y"0) are
!(J5!1)/2"A~

F
and A

SEP
obtained numerically as

A
SEP

"2)00425930. (4.1.4)

Along the x-axis of the phase portrait there are therefore the points

A~
F
"!0)618(A~

H
"0(A`

F
"1)618(A`

H
"2(A

SEP
"2)00426 (4.1.5)

with corresponding orbit K values

K(A~
F

)"0)4701"K(A
SEP

)'K(A~
H

)"0"K(A`
H

)'K(A`
F

)"!15)7188. (4.1.6)

This whole analysis is important here because a numerical investigation of the
di!erential equation (4.1.1) itself with initial values A,x (0) in the vicinity of
A`

H
"2 could fail to reveal the periodic orbits with lesser x-intercepts between

A~
H
"0 and A~

F
"!0)618 unless values of x (0) very close to 2, i.e., less than

A
SEP

+2)004, were used. Then, whilst the e!ect is imperceptible near x"2, the
other, negative, intercepts of the computed periodic orbits are observably well
spread out.

Figure 1 shows a phase portrait with representative trajectories, and includes
features such as the stable centre and the unstable saddle point; some periodic,
including the harmonic, orbits; the separatrix; and some unstable (unbounded)
trajectories. The corresponding values of the conserved quantity K are noted in the
accompanying caption.

5. CONCLUSION

The general quadratic velocity-dependent conservative non-linear oscillator
equation (2.1), which contains terms of mixed parity, has been investigated. Exact
harmonic solutions, and the conditions for their existence, have been derived, and
shown to correspond to zero value of the associated conserved quantity. Within the
structure of the phase portrait, the signi"cance of this harmonic solution is that it
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represents the transition, as K increases through zero (the bifurcation value), from
a regime with a single periodic solution to a region where both a periodic solution
and an unstable solution exist. All features of the phase portrait have been
characterized in terms of the di!erential equation parameters.
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